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We propose quantum phase transitions beyond the Landau’s paradigm of Sp�4� spin Heisenberg models on
the triangular and square lattices motivated by the exact Sp�4��SO�5� symmetry of spin-3/2 fermionic cold
atomic system with only s-wave scattering. On the triangular lattice, we study a phase transition between the
�3��3 spin ordered phase and a Z2 spin liquid phase; this phase transition is described by an O�8� sigma
model in terms of fractionalized spinon fields, with significant anomalous scaling dimensions of spin order
parameters. On the square lattice, we propose a deconfined critical point between the Neel order and the
valence bond solid �VBS� order, which is described by the CP�3� model, and the monopole effect of the
compact U�1� gauge field is expected to be suppressed at the critical point.
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I. INTRODUCTION

Landau’s classic phase-transition paradigm describes con-
tinuous phase transitions by symmetry breaking of the
system1 and the powerful renormalization-group theory, de-
veloped by Wilson, suffices this paradigm with systematic
calculation techniques. Based on Landau-Ginzburg-Wilson
�LGW� theory,2 the continuous phase transition should be
described by fluctuations of physical order parameters. A few
years ago, it was proposed that a direct unfine-tuned continu-
ous transition between two-ordered phases, which break dif-
ferent symmetries is possible in quantum magnet3,4 �which is
forbidden in Landau’s theory�. Recent numerical results sug-
gest that this transition may exist in a SU�2� spin-1/2 model
with both Heisenberg and ring exchange.5,6 The key feature
of this non-Landau critical behavior is that at the critical
point the field theory in terms of fractionalized objects with
no obvious physical probe is a more appropriate description.
In spite of the difficulty of probing the fractionalized excita-
tions, the fractionalized nature of the critical point leads to
enormous anomalous dimension of the physical order param-
eter that is distinct from the Wilson-Fisher fixed-point or the
mean-field result, which can be checked experimentally.

In a seminal paper, it was proved that in spin-3/2 cold
atom systems, with the standard s-wave scattering approxi-
mation, the four-component spin-3/2 fermion multiplet en-
joys an enlarged Sp�4��SO�5� symmetry without fine tun-
ing any parameter.7 By tuning the spin-0 and spin-2
scattering channels, there is one point with an even larger
SU�4��Sp�4� symmetry.7–9 The fundamental representation
of the 15 generators of SU�4� Lie algebra can be divided into
two groups. �a with a=1,2¯5 and �ab= 1

2i ��
a ,�b�. �a obey

the Clifford algebra ��a ,�b�=2�ab. Let us denote the fermion

atom operator as ��, then the fermion bilinear �̂a=�†�a�

form a vector representation of Sp�4� group and �̂ab
=�†�ab� form an adjoint representation of Sp�4� group. In
the particular representation, we choose,

�a = �a
� �z, a = 1,2,3, �4 = 1 � �x, �5 = 1 � �y .

�1�

The difference between SU�4� algebra and Sp�4� algebra is
that two Sp�4� particles can form a Sp�4� singlet through a

4�4 antisymmetric matrix J= i�y � �x, which satisfies the
following algebra:

J t = − J,J 2 = − 1,J �abJ = �ab
t ,J �aJ = − �a

t . �2�

One can see that J�	��
†�	

† creates a Sp�4� invariant state,
therefore, the valence bond solid �VBS� state of SU�2� spin
systems can be naturally generalized to Sp�4� spin systems.
By contrast, two SU�4� particles can only form a six-
dimensional representation and a ten-dimensional represen-
tation of SU�4� algebra and the smallest SU�4� singlet always
involves four particles.

If we consider a Mott-Insulator phase of spin-3/2 cold
atoms on the optical lattice with one particle per well on
average, the effective spin Hamiltonian should be invariant
under Sp�4� transformations. The most general Sp�4�-
Heisenberg model contains two terms:

H = 	

i,j�

J1�̂i
ab�̂ j

ab − J2�̂i
a�̂ j

a. �3�

The key difference between �̂ab and �̂a is their behavior
under time-reversal transformation. The time-reversal trans-
formation on the fermion multiplet �� is ��→J�	�	; this

implies that �̂ab ��̂a� is odd �even� under time reversal. Also,
if rewritten in terms of the original SU�2� spin-3/2 matrices,
�ab only involves the odd powers of spins and �a only in-
volves the even powers of spins.9 This model can be exactly
realized in spin-3/2 cold atom systems, the coefficients J1
and J2 are determined by the spin-0 and spin-2 scattering
parameters.9 Clearly when −J2=J1, the system has SU�4�
symmetry. In this work we will consider the Heisenberg
model on the triangular and square lattice, in the parameter
regime with J1
0. Our focus in the current work will be the
non-Landau-type quantum phase transitions, which is also a
larger spin generalization of the deconfined criticality dis-
cussed before. A more detailed analysis of the whole phase
diagram of the Sp�4� Heisenberg model in Eq. �3� will be
given in a future work.10
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II. Sp(4) HEISENBERG MODEL ON THE TRIANGULAR
LATTICE

Let us study the triangular lattice first, then we will use
the standard Schwinger boson formalism to study the mag-
netic ordered phase. We introduce Schwinger boson spinon

b�, as usual Ŝi
a=bi,�

† S�	
a bi,	, where Ŝa are the 15 generators of

SU�4� algebra in the fundamental representation. This defi-
nition of spinon b� is subject to a local constraint:
	�=1

4 bi,�
† bi,�=1, which also manifests itself as a local U�1�

degree of freedom:bi,�→exp�i�i�bi,�. Using the following
identities:11

��	
ab ���

ab = 2����	� − 2J��J	�,

��	
a ���

a = 2����	� + 2J��J	� − ��	���, �4�

the Hamiltonian �3� can be rewritten as

H = 	

i,j�

2�J1 − J2�K̂ij
† K̂ij − 2�J1 + J2�Q̂ij

† Q̂ij ,

K̂ij = bi,�
† bj,�,Q̂ij = J�	bi,�bj,	. �5�

Now we introduce two variational parameters Kij = 
K̂ij� and

Qij = 
Q̂ij� and assuming that these variational parameters are
uniform on the whole lattice, the mean-field Hamiltonian for
Eq. �3� reads,

Hmf = 	

i,j�

2�J1 − J2�KK̂ij − 2�J1 + J2�QQ̂ij + H.c.

− 2�J1 − J2�K2 + 2�J1 + J2�Q2 − ��bi,�
† bi,� − 1� . �6�

The following formalism is similar to Ref. 12, which studied
the SU�2� spin models on the triangular lattice. The term
involving � imposes the constraint on the Hilbert space of
spinon 	�=1

4 bi,�
† bi,�=1. If the spectrum of the spinons is gap-

less, the spinon will condense at the minima of the Brillouin
zone. By solving the self-consistent equations for K, Q, and
�, we obtain that when J2 /J1
−0.3, there is a finite percent-
age of spinon condensate at momenta q�0
=  �2� /3,2� /�3�, which are the corners of the Brillouin
Zone. The condensate density as a function of J2 /J1 is plot-
ted in Fig. 1.

The gauge-field fluctuation rooted in the constraint
	�=1

4 bi,�
† bi,�=1 is the most important correction to the mean-

field calculation above. The local constraint would in general
induce U�1� gauge fluctuations. However, the condensate ob-
tained from the Schwinger boson formalism corresponds to

the state with nonzero expectation value Q= 
Q̂ij�, which is a
pairing amplitude. The pairing between nearest-neighbor
sites breaks the U�1� gauge symmetry down to Z2 gauge
symmetry, therefore, the long-wavelength field theory of this
condensate should only have Z2 gauge symmetry. To under-
stand this order, we define slow mode z� as

b��x� = eiq�0·x�z��x� + e−iq�0·x�J�	z	
��x� . �7�

Now one can rewrite spin operators �̂ab and �̂a in terms of
slow mode z� as

�̂ab � ei2q�0·x�zJ�abz + H.c.,

�̂a � z†�az = na. �8�

Therefore �̂a has a uniform order na, while �̂ab is only or-
dered at finite momentum 2q�0. For completeness, one can
define Sp�4� adjoint vector n1,ab and n2,ab as

n1,ab = Re�zJ�abz�,n2,ab = Im�zJ�abz� . �9�

The order of �̂ab can be written in terms of n1,ab and n2,ab,

�̂ab � cos�2q�0 · x��n1,ab + sin�2q�0 · x��n2,ab,

	
a,b

n1,abn2,ab = 0. �10�

n1,ab and n2,ab are two Sp�4� adjoint vectors “perpendicular”

to each other. Since �̂a is time-reversal even, while �̂ab is
time-reversal odd,9 the condensate of z� has both uniform
spin nematic order and �3��3 order.

The U�1� local gauge degree of freedom is lost in Eq. �7�.
The residual gauge symmetry is only Z2, which transforms
z→−z. Physically this implies that an arbitrary U�1� trans-
formation of z field will result in a rotation of spin order

parameter �̂ab. This situation is very similar to the spinon
description of the �3��3 order of SU�2� spins on the trian-
gular lattice.13 The field theory describing this condensate
should contain Z2 gauge field. However, since Z2 gauge field
does not introduce any long-range interaction or critical be-
havior, we can safely integrate out the Z2 gauge field. The
field theory can then be written as

L = ��z2 + rz2 + g�z2�2 + ¯ �11�

The ellipses include all the Sp�4� invariant terms.
Apparently, without the ellipses, the Lagrangian �11� en-

joys an enlarged O�8� symmetry once we define the real
boson field multiplet �� as �� = �Re�z1� , Im�z1� , ¯ , Im�z4��t

and the Lagrangian �11� can be rewritten as
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FIG. 1. Mean-field solutions on triangular lattice at different
J2 /J1 with J1
0. The y axes �c show the density of spinon con-
densate, which is also proportional to z2 as defined in Eq. �7�. �c

decreases to nearly zero �0.007� as J2 /J1 decreases.
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L = 	
�=1

8

������2 + r�� 2 + g��� 2�2 + ¯ �12�

The Lagrangian �12�, without other perturbations, describes
an O�8� transition and the ordered state has a ground-state
manifold �GSM�,

U�4�/�U�3� � Z2� = S7/Z2 = RP�7� , �13�

we mod Z2 from S7 because of the Z2 gauge symmetry of z.
There are certainly other terms in the field theory, which can
break the O�8� symmetry down to Sp�4� symmetry, but all
the terms allowed by Sp�4� symmetry and lattice symmetry
include at least two derivatives, for instance J�	z���z	2.
These terms change the Goldstone mode dispersion but do
not change the GSM, and since they contain high powers of
z and also at least two derivatives, they are irrelevant at the
O�8� critical point. Other Sp�4� invariant terms without de-
rivatives such as 	a,b�n1,ab�2, 	a�na�2, �abcden1,abn1,cdne, etc.,
either vanish or can be rewritten in terms of powers of z†z,
which preserves the O�8� symmetry. Therefore, we conclude
that the ground-state manifold of the condensate is S7 /Z2 and
the transition between the condensate and disordered state by
tuning J1 /J2 belongs to the O�8� universality class. This tran-
sition is beyond the Landau’s paradigm in the sense that the
field theories �11� and �12� are written in terms of spinon
field instead of physical order parameters. The physical order
parameters are bilinears of spinon, which implies that the
anomalous dimension of the physical order parameters are
enormous at this transition.

Since the GSM is S7 /Z2 with fundamental group
�1�S7 /Z2�=Z2, in the condensate there are gapped visons,
which is a “�-flux” of the “Higgsed” Z2 gauge field. The
disordered phase is actually a Z2 spin liquid with gapped but
mobile visons. This Z2 spin liquid phase of SU�2� spin sys-
tems can be most conveniently visualized in the quantum
dimer model �QDM� on the triangular lattice,14 which by
tuning the dimer flipping and the dimer potential energy,
stabilizes a gapped phase with Z2 topological order and with
no symmetry breaking. As we discussed earlier, two Sp�4�
particles can form a Sp�4� singlet, therefore, the QDM for
Sp�4� spin systems is exactly the same as the SU�2� spins,
with also a stable Z2 spin liquid phase. Because the Z2 spin
liquid is a deconfined phase, the excitations of the Z2 spin
liquid include gapped Sp�4� bosonic spinons besides the vi-
sons. If we start with the disordered Z2 spin liquid state and
drive a transition by condensing the gapped Sp�4� spinon, the
field theory of this transition is in the same form as Eq. �11�.

Since on one site there is only one particle, the particular
QDM is subject to the local constraint with one dimer con-
nected to each site. This type of QDM is called odd QDM,
since the product of Z2 electric field around each site is
��x=−1, which will attach a �-flux to each hexagon of the
dual honeycomb lattice of the triangular lattice. This �-flux
that is seen by the visons will lead to four degenerate minima
in the vison band, and the condensation of the vison at these
minima breaks the translation and rotation symmetry of the
lattice,15 and the transition has been suggested to be an O�4�
transition.

In this section, we discussed the transition between the Z2

spin liquid and the �3��3 state of the Sp�4� spin system.
For comparison, let us briefly discuss the order-disorder tran-
sition of the �3��3 state in the standard Landau theory,
ignoring the topological nature of the Z2 spin liquid. In the
�3��3 order, both time-reversal and Sp�4� spin symmetries
are broken. A general Ginzburg-Landau-Lagrangian can be
written in terms of the time-reversal even O�5� vector na,

which is defined as the long-wavelength field of �̂a and two
adjoint vectors n1

ab and n2
ab, introduced in Eq. �10�. At the

quadratic level, none of these three vectors mix, while at the
cubic order, a mixing term is allowed by the Sp�4� symmetry,
	i=1

2 �abcdeni
abni

cdne. This term implies that the ordering of the
adjoint vectors would drive the order of na, but the statement
is not necessarily true conversely. If the O�5� vector na is
ordered while the adjoint vectors n1

ab and n2
ab are disordered,

the system breaks the Sp�4� symmetry while preserving the
time-reversal symmetry. Therefore, if the system is tuned
toward the disordered phase, the Landau’s theory allows for
multiple transitions with the time-reversal symmetry restored

before the Sp�4� symmetry. A uniform collinear order �̂a has
GSM S4=SO�5� /SO�4�, therefore, the transition of na be-
longs to the O�5� universality class. The transition associated
with time-reversal symmetry breaking is described by the
O�10� vectors n1

ab and n2
ab, with various anisotropies in the

background of the gapless O�5� ordering na. For instance, at
the quartic order, there is a term which imposes the “orthogo-
nality” between the two O�10� vectors �	a,bn1

abn2
ab�2. The na-

ture of this transition requires more detailed analysis. By
contrast, the Schwinger boson and field theory analysis show
that there can be a direct O�8� transition between the phase
with coexistence of na and ni,ab and a spin disordered phase
with Z2 topological order.

III. Sp(4) HEISENBERG MODEL ON THE SQUARE
LATTICE

Now let us switch the gear to the square lattice. On the
square lattice, at the point with J1=J2
0, the model �Eq.
�3�� can be mapped to the SU�4� Heisenberg model with
fundamental representation on one sublattice and conjugate
representation on the other.9 The equivalence can be shown
by performing transformation Sa→J†SaJ on one of the sub-
lattices and by using the identities in Eq. �2�. At this point,
J1=J2 has been thoroughly studied by means of large-N
generalization16–18 and quantum Monte Carlo.19 It is agreed
that at this point the spinon b� condenses, and there is a
small Neel moment. In the Schwinger boson language, the
Neel state on the square lattice corresponds to the condensate

of Schwinger bosons with nonzero expectation of 
Q̂ij�,
which seems to break the U�1� gauge symmetry down to Z2.
However, the U�1� gauge symmetry can be restored if the
Schwinger bosons on the two sublattices are associated with
opposite gauge charges, therefore, the connection between
spinon b� and low energy field z� is
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b� � z�,�sublattice A� ,

b� � J�	z	
† ,�sublattice B� . �14�

The GSM of the Schwinger boson condensate is

U�4�/�U�1� � U�3�� = S7/U�1� = CP�3� . �15�

The field theory for this condensate is most appropriately
described by the CP�3� model

L = 	
�=1

4

��� − ia��z�2 + rz2 + g�z2�2 + ¯ �16�

Again, if we perturb this field theory with Sp�4� invariant
terms, the GSM is still CP�3� and the critical behavior is
unchanged. The condensate of z� has staggered spin order

�̂ab but uniform nematic order �̂a on the square lattice.
In the condensate of z, gauge field a� is Higgsed; if z is

disordered, a� would be in a gapless photon phase if the
gauge fluxes are conserved. However, because �2�CP�3��
=Z, the ground-state manifold can have singular objects in
the 2+1 dimensional space time,16 which corresponds to the
monopole of the compact U�1� gauge field a�. The conser-
vation of gauge fluxes is broken by the monopoles, which
due to its Berry phase will drive the system to a phase break-
ing the lattice symmetry.16,20

At another point with −J2=J1
0, this model is SU�4�
invariant with fundamental representations on both sublat-
tices. This point is not so well studied. A fermionic mean-
field theory21 and an exact diagonalization22 on a 4�4 lat-
tice has been applied to this point. The results suggest that
the ground state may be a plaquette order, as depicted in Fig.
2, with four particles forming a SU�4� singlet on every one
out of four unit squares. A similar plaquette ordered phase is
obtained on the spin ladder.23 It is interesting to consider the
dynamics of the plaquettes, for instance, in three–
dimensional �3D� cubic lattice, a quantum plaquette model as
a generalization of the quantum dimer model has been stud-
ied both numerically24 and analytically.25 If we perturb away
from the SU�4� point with Sp�4� invariant terms, this
plaquette order is expected to persist into a finite region in
the phase diagram due to its gapped nature. This phase pre-
sumably can be continuously connected to the Sp�4� VBS
state with Sp�4� singlets resonating on every one of four unit
squares �Fig. 2� because both states are gapped and they

break the same lattice symmetry. More details about the pos-
sible phases on the square lattice is under study by another
group.26

The dimer resonating plaquette state can be understood in
the same way as the dimer columnar state and as the prolif-
eration of monopoles of the compact U�1� gauge field then
the oscillating Berry phase of the monopoles will choose the
specific lattice symmetry-breaking pattern. Both the dimer
columnar order and the dimer plaquette order can be viewed
as a condensate of fluxes of U�1� gauge field with the U�1�
conservation of fluxes breaking down to Z4, and if the phase
angle of the condensate is 2n� /4, the system is in the co-
lumnar state. While if the phase angle is �2n+1�� /4, the
system is in the dimer plaquette phase16 �Fig. 2�. If one con-
siders a pure QDM on the square lattice, then the crystalline
pattern can be obtained from the dual rotor model with the
Lagrangian,27,28

Ld = �����2 − � cos�8��� . �17�

Here exp�i2��� is the monopole operator, which creates a
2� flux of the U�1� gauge field. Now whether the system
favors the columnar order or the dimer resonating plaquette
order, it simply depends on the sign of �.

Now we conjecture a phase diagram �Fig. 3�. Suppose J1
is fixed and we tune J2, if J2
Jc, then the system remains in
the condensate of z, which is the Neel order of spin opera-
tors. When J2�Jc, then the system loses the Neel order and
enters the VBS state. This transition can be a direct second-
order transition and the field theory is described by the CP�3�
model in Eq. �16�, assuming the CP�3� model itself has a
second-order transition. The most important instability on
this field theory is the monopole of the compact U�1� gauge
field, which is certainly relevant in the crystalline phase.
However, it has been shown convincingly that at the 3D XY
transition, the Z4 anisotropy of the XY variable is irrelevant29

and it was also argued that a large number of flavor of boson
field tend to suppress the monopole effects.4 Therefore, it is
likely that the monopoles are irrelevant at the critical point
described by field theory �16�. Compared with the SU�2�
spin system, our Sp�4� system with doubled number of com-
plex boson fields has a better chance to ensure the irrel-
evance of monopole perturbations at the transition. We also
want to point out that between the Neel order and the dimer
resonating plaquette order, an intermediate phase with co-

ba

FIG. 2. �Color online� �a� The SU�4� plaquette order pattern,
with four SU�4� particles around the colored squares, form a SU�4�
singlet. �b� The particular type of VBS state depends on the phase
angle of the monopole operator.

B J / J2 1SU(4)SU(4)

NeelVBS

A

FIG. 3. �Color online� The conjectured phase diagram for the
Heisenberg model in Eq. �3�. By tuning one parameter J2 /J1, the
system evolves from the Neel state to the dimerized VBS state and
the transition can be continuous. The dashed lines denote the mag-
nitude of the Neel and VBS order parameter. SU�4�A is the SU�4�
invariant point with fundamental representation on all sites and
SU�4�B point is another SU�4� point with fundamental representa-
tion on one sublattice and conjugate representation on the other.
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lumnar order is also possible. But the transition between the
Neel order and the columnar order is also described by field
theory �16� and the columnar order is connected to the reso-
nating plaquette order through a first-order transition.

IV. SUMMARY AND EXTENSION

In this work, we studied the quantum phase transitions
beyond the Landau’s paradigm in the spin-3/2 cold atom
systems with emergent enlarged Sp�4� symmetry. Compared
with the J−Q model studied before,5,6 the spin model we
considered is very realistic; we propose that these results are
observable in real experimental systems in the future. It
would also be interesting to study the Heisenberg model in
this work through numerical techniques. A careful numerical
study of the classical CP�3� model without monopoles is also

desired, as has been done recently for the SU�2� invariant
CP�1� model.30

The current work focused on the parameter regime with
J1
0. In the regime withJ1�0, the Schwinger boson for-
malism would lead to the ordered state with nonzero expec-

tation value K= 
K̂ij� and the Schwinger bosons condense at
momentum �0,0�. This state is the ferromagnetic state with
uniform order nab and na. The ferromagnetic state and the
Neel state can be connected through a first-order transition.
More theoretical tools are desired to determine the other
parts of the phase diagram accurately. We will leave this to
the future work.10
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